Middleware and Web Services Security

Dr. Konstantin Beznosov
Assistant Professor
University of British Columbia
Do you know what these mean?

- SOAP
- WSDL
- IIOP
- CSI v2
Learn what security mechanisms are available in middleware and Web services products
Konstantin

- Worked for end-user, consulting, and developer organizations
- Co-authored CORBA Security standards proposals
 - Resource Access Decision
 - Security Domain Membership Management (SDMM)
 - CORBA Security
- Co-authored
I do not believe current tools, technologies, and methodologies support “Extreme” Performance Testing.
How many of you can explain?

- Various security mechanisms
- What middleware and Web services are
- What makes middleware and Web services security special
- What common architectures for security mechanisms are in most middleware and Web service technologies
- What are the differences among security mechanisms of various middleware and Web service technologies?
Outline

- **Part I: Security**
 - What are security mechanisms?

- **Part II: Middleware and Web services**
 - What are middleware and Web services?
 - What’s special about middleware and Web services security?

- **Part III: Security in middleware and Web services**
 - What are common architectures for security mechanisms in most middleware and Web service technologies?
 - What are the differences among security mechanisms of COM+ and EJB?

- **Part IV: Conclusions**
 - Summary
 - Where to go from here?
Outline

- **Part I: Security**
 - What are security mechanisms?

- **Part II: Middleware and Web services**
 - What are middleware and Web services?
 - What’s special about middleware and Web services security?

- **Part III: Security in middleware and Web services**
 - What are common architectures for security mechanisms in most middleware and Web service technologies?
 - What are the differences among security mechanisms of COM+ and EJB?

- **Part IV: Conclusions**
 - Summary
 - Where to go from here?
What is Computer Security?

- security -- “safety, or freedom from worry”
- How can it be achieved?
 - Get rid of the sources of worry
 - Don’t trust computers anything valuable
 - Make computers too heavy to steal
 - Buy insurance (liability transfer)
 - Create redundancy (disaster recovery services)
Goals of Security

- **Prevention**
 - Prevent attackers from violating security policy
- **Detection**
 - Detect attackers’ violation of security policy
- **Recovery**
 - Stop attack, assess and repair damage
 - Continue to function correctly even if attack succeeds
What Computer Security Policies are Concerned with?

- **Confidentiality**
 - Keeping data and resources hidden

- **Integrity**
 - Data integrity (integrity)
 - Origin integrity (authentication)

- **Availability**
 - Enabling access to data and resources

CIA
Conventional Approach to Security

Protection
- Authorization
- Accountability
- Availability
- Access Control
- Data Protection
- Audit
- Non-Repudiation
- Service Continuity
- Disaster Recovery

Assurance
- Requirements Assurance
- Design Assurance
- Development Assurance
- Operational Assurance

Authentication
Cryptography
Protection

- provided by a set of mechanisms (countermeasures) to prevent bad things (threats) from happening
Authorization

protection against breaking rules

Rule examples:
- Only registered students should be able to take exam or fill out surveys
- Only the bank account owner can debit an account
- Only hospital’s medical personnel should have access to the patient’s medical records
- Your example…
Access Control

Definition: enforces the rules, when rule check is possible

Mix of terms:
Authorization == Access Control Decision
Authorization Engine == Policy Engine
Authorization Mechanisms:
Data Protection

- No way to check the rules
 - e.g. telephone wire or wireless networks
- No trust to enforce the rules
 - e.g. MS-DOS
Accountability

You can tell who did what when

- **(security) audit** -- actions are recorded in audit log
- **Non-Repudiation** -- evidence of actions is generated and stored
Availability

- **Service continuity** -- you can always get to your resources
- **Disaster recovery** -- you can always get back to your work after the interruption
Types of Security Mechanisms

- secure
- precise
- broad

set of reachable states
set of secure states
Assurance

Set of things the system builder and the operator of the system do to convince you that it is really safe to use.

- the system can enforce the policy you are interested in, and
- the system works as intended
How do you decide which policies to enforce and mechanisms to use?
It’s all about risk

\[
\text{Risk} = \text{Asset} \times \text{Vulnerability} \times \text{Threat}
\]
Security is a Process

Source: Common Criteria for Information Technology Security Evaluation. 1999
Classes of Threats

- **Disclosure**
 - Snooping
- **Deception**
 - *Modification*
 - Spoofing
 - repudiation of origin
 - denial of receipt
- **Disruption**
 - *Modification*
 - denial of service
- **Usurpation**
 - Modification
 - Spoofing
 - Delay
 - denial of service
<table>
<thead>
<tr>
<th>Protection</th>
<th>Assurance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authorization</td>
<td>Requirements</td>
</tr>
<tr>
<td>Accountability</td>
<td>Design</td>
</tr>
<tr>
<td>Availability</td>
<td>Development</td>
</tr>
<tr>
<td>Access Control</td>
<td>Assurance</td>
</tr>
<tr>
<td>Data Protection</td>
<td>Operational</td>
</tr>
<tr>
<td>Audit</td>
<td></td>
</tr>
<tr>
<td>Non-Repudiation</td>
<td></td>
</tr>
<tr>
<td>Authentication</td>
<td></td>
</tr>
<tr>
<td>Cryptography</td>
<td></td>
</tr>
</tbody>
</table>
Key Points (cont-ed)

- Secure, precise, and broad mechanisms
- Risk = Asset * Vulnerability * Threat
- Steps of improving security
- Classes of threats
 - Disclosure
 - Deception
 - Disruption
 - Usurpation
- Reference monitor mediates actions of subjects on objects
Outline

- **Part I: Security**
 - What are security mechanisms?

- **Part II: Middleware and Web services**
 - What are middleware and Web services?
 - What's special about middleware and Web services security?

- **Part III: Security in middleware and Web services**
 - What are common architectures for security mechanisms in most middleware and Web service technologies?
 - What are the differences among security mechanisms of COM+ and EJB?

- **Part IV: Conclusions**
 - Summary
 - Where to go from here?
What is middleware?

It’s what’s between topware and underwear
Distributed Application Built Using DOS

Machine A Machine B Machine C

Distributed applications

Distributed operating system services

Kernel Kernel Kernel

Network

Distributed Application Built Using NOS

Machine A

Network OS services

Kernel

Machine B

Network OS services

Kernel

Machine C

Network OS services

Kernel

Network

Distributed Application Built Using Middleware

Software Support for Distributed Applications

<table>
<thead>
<tr>
<th>System</th>
<th>Description</th>
<th>Main Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOS</td>
<td>Tightly-coupled operating system for multi-processors and homogeneous multicomputers</td>
<td>Hide and manage hardware resources</td>
</tr>
<tr>
<td>NOS</td>
<td>Loosely-coupled operating system for heterogeneous multicomputers (LAN and WAN)</td>
<td>Offer local services to remote clients</td>
</tr>
<tr>
<td>Middleware</td>
<td>Additional layer atop of NOS implementing general-purpose services</td>
<td>Provide distribution transparency</td>
</tr>
</tbody>
</table>
Most Middleware Uses Remote Procedure Call

RPC Clients and Servers

Distributed Objects

- Distributed Computing Environment (DCE) Remote Objects
- Common Object Request Broker Architecture (CORBA)
- Microsoft’s Distributed Component Object Model (DCOM) & COM+
- Java Remote Method Invocation (RMI)
- Enterprise Java Beans
- .NET Remoted Objects
Middleware Services

- Communication facilities
- Naming
- Persistence
- Concurrency
- Distributed transactions
- Fault tolerance
- Security
Middleware Openness

What's Middleware Openness?

- Operating system independent
- Completeness and portability
- Interoperability
What's Web Services?
How do middleware and Web services differ?

<table>
<thead>
<tr>
<th>Features/properties</th>
<th>middleware</th>
<th></th>
<th>Web services</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>traditional</td>
<td>MOM</td>
<td></td>
</tr>
<tr>
<td>Client server</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>RPC</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>OS independent</td>
<td>mostly</td>
<td>mostly</td>
<td>no</td>
</tr>
<tr>
<td>Completeness and portability</td>
<td>yes</td>
<td>mostly</td>
<td>no</td>
</tr>
<tr>
<td>interoperability</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Promise of Web Services

- Interoperability across lines of business and enterprises
 - Regardless of platform, programming language and operating system
- End-to-end exchange of data
 - Without custom integration
- Loosely-coupled integration across applications
 - Using Simple Object Access Protocol (SOAP)
Web Services Features

XML-based messaging interface to computing resources that is accessible via Internet standard protocols

- WS help *intranet* (business units) and *extranet* (business partners) *applications* to communicate
- SOAP – format for WS communications
 - Defined in XML
 - Supports RPC as well as document exchange
 - No predefined RPC semantics
 - Stateless
 - Can be sent over various carriers: HTTP, FTP, SMTP, … postal service
<?xml version="1.0" ?>
<env:Envelope xmlns:env="http://www.w3.org/2002/06/soap-envelope">
 <env:Header>
 <n:alertcontrol xmlns:n="http://example.org/alertcontrol">
 <n:priority>1</n:priority>
 <n:expires>2001-06-22T14:00:00-05:00</n:expires>
 </n:alertcontrol>
 </env:Header>
 <env:Body>
 <m:alert xmlns:m="http://example.org/alert">
 <m:msg>Pick up Mary at school at 2pm</m:msg>
 </m:alert>
 </env:Body>
</env:Envelope>
Typical Web Service Environment
J2EE Web Service Systems

- Client Tier
 - Application Client
 - Browser

- Presentation Tier
 - Web Server
 - JSPs
 - Servlets

- Component Tier
 - EJB Container
 - EJB
 - RMI-IIOP
 - JDBC
 - JCA
 - Databases

- Back-office Tier
 - Mainframes
• Part I: Security
 - What are security mechanisms?

• Part II: Middleware and Web services
 - What are middleware and Web services?
 - What’s special about middleware and Web services security?

• Part III: Security in middleware and Web services
 - What are common architectures for security mechanisms in most middleware and Web service technologies?
 - What are the differences among security mechanisms of COM+ and EJB?

• Part IV: Conclusions
 - Summary
 - Where to go from here?
client-server paradigm & security

Diagram:

- A sends a request to B
- B sends a response to A
- A sends a request to C
- C sends a response to B
- B sends a request to C
requirements due to distribution

- centralized administration
- localized run-time decisions
- objects
 - small amounts of data ==> large numbers
 - R: Scale on large numbers of objects and methods
 - diverse methods ==> complex semantics
 - R: Security administrators should not have to understand semantics of methods

- collections
 - R: Similar names or locations should NOT impose membership in same collection(s).
 - R: For an object to be assigned to the same collection, name similarity and/or co-location should not be required.
• many layers of indirection and late binding
• names
 - multi-name, nameless and transient objects
 - R: Transient objects should be assigned to security policies without human intervention.
 - less rigid naming hierarchies
 - R: No assumptions that administrators know a name of each object in the system.
Outline

- **Part I: Security**
 - What are security mechanisms?
- **Part II: Middleware and Web services**
 - What are middleware and Web services?
 - What’s special about middleware and Web services security?
- **Part III: Security in middleware and Web services**
 - What are common architectures for security mechanisms in most middleware and Web service technologies?
 - What are the differences among security mechanisms of COM+ and EJB?
- **Part IV: Conclusions**
 - Summary
 - Where to go from here?
Middleware Security Stack

Client
- Application
- Proxy
- ORB
- Security Service
 - Security Mechanism Implementation
- OS
- Network

Server
- Application
 - Application Server
 - Skeleton
 - Adapter
- ORB
- Security Service
 - Security Mechanism Implementation
- OS
- Network

RPC Abstraction

Actual messages

security context abstraction
Policy Enforcement and Decision

Application

Target

Access Request

Enforcement Function

Middleware Security Subsystem

Middleware

Access Request

Decision Function

Decision Request

Decision

Decision Request

Decision Function
Distributed Authentication

- Password-based
- Symmetric key
 - e.g., Kerberos
- Asymmetric key
 - e.g., PKI
Data Protection

Client

Application

Proxy

ORB

Security Service

Security Mechanism Implementation

OS

Network

RPC Abstraction

Server

Application

Application Server

Skeleton

Adapter

ORB

Security Service

Security Mechanism Implementation

OS

Network

Middleware Security

security context abstraction

security context abstraction

Actual messages

Actual messages
Data Protection in Web Services
<? Xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2001/12/soap-envelope"
 xmlns:sig="http://www.w3.org/2000/09/xmldsig#"
 xmlns:enc="http://www.w3.org/2001/04/xmlenc#">
 <env:Header>
 <sec:Security
 sec:actor="http://www.w3.org/2001/12/soap-envelope/actor/next"
 sec:mustUnderstand="true">
 <sig:Signature>
 ...
 </sig:Signature>
 <enc:EncryptedKey>
 ...
 </enc:EncryptedKey>
 <sec:BinarySecurityToken>
 ...
 </sec:BinarySecurityToken>
 </sec:Security>
 </env:Header>
 <env:Body>
 <enc:EncryptedData>
 ...
 </enc:EncryptedData>
 </env:Body>
</env:Envelope>
WS-Security

- Message integrity and message confidentiality
- Compliance with XML Signature and XML Encryption
- Encoding for binary security tokens
 - Set of related claims (assertions) about a subject
 - X.509 certificates
 - Kerberos tickets
 - Encrypted keys
XML Encryption

• Encrypt all or part of an XML message
• Separation of encryption information from encrypted data
• Super-encryption of data

```
<EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'
    Type='http://www.w3.org/2001/04/xmlenc#Content'>
    <EncryptionMethod Algorithm='http://www.w3.org/2001/04/xmlenc#3des-cbc'/>
    <ds:KeyInfo xmlns:ds='http://www.w3.org/2000/09/xmldsig#'>
        <ds:KeyName>John Smith</ds:KeyName>
    </ds:KeyInfo>
    <CipherData>
        <CipherValue>A23B45C56</CipherValue>
    </CipherData>
</EncryptedData>
```
XML Signature

- Apply to all or part of a document
- Contains: references to signed portions, canonicalization algorithm, hashing and signing algorithm IDs, public key of the signer.
- Multiple signatures with different characteristics over the same content

```xml
<Signature Id="MySignature" xmlns="http://www.w3.org/2000/09/xmldsig#">
  <SignedInfo>
    <CanonicalizationMethod Algorithm="http://www.w3.org/.../REC-xml-c14n-20010315"/>
    <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
    <Reference URI="http://www.w3.org/TR/2000/REC-xhtml1-20000126/">
      <Transforms>
        <Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
      </Transforms>
      <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
      <DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</DigestValue>
    </Reference>
  </SignedInfo>
  <SignatureValue>MC0CFFrVLtRlk=...</SignatureValue>
  <KeyInfo>
    <KeyValue>
      <DSAKeyValue>
        <P>...</P><Q>...</Q><G>...</G><Y>...</Y>
      </DSAKeyValue>
    </KeyValue>
  </KeyInfo>
</Signature>
```
Security Policy Decisions
Policy Enforcement and Decision

Application

Target

Access Request

Enforcement Function

Decision Request

Decision Function

Middleware Security Subsystem

Middleware

Access Request
scaling policy decisions

attributes

permissions

domains, types

Clients

Methods

Targets

Subjects
Credentials Delegation

- What are credentials?
- Push and pull models
- No delegation
 ![Diagram](image)
- Simple delegation: impersonation or controlled
 ![Diagram](image)
- Composite delegation
 ![Diagram](image)
- Also: combined privileges, traced delegation
Issues in Distributed Audit

- Monitor activity across and between objects.
- Order of the audit records is hard to determine because of the lack of global time.
- Performance
- No guarantee that an event has been logged.
• Part I: Security
 - What are security mechanisms?

• Part II: Middleware and Web services
 - What are middleware and Web services?
 - What’s special about middleware and Web services security?

• Part III: Security in middleware and Web services
 - What are common architectures for security mechanisms in most middleware and Web service technologies?
 - What are the differences among security mechanisms of COM+ and EJB?

• Part IV: Conclusions
 - Summary
 - Where to go from here?
COM+ Specifics
Authentication in COM+

- Supported mechanisms
 - Kerberos
 - Windows NT LAN Manager (NTLM)

- Granularity modes
 - Never
 - At the time of establishing secure channel
 - On every call
 - With every network packet

- Credentials delegation options
 - No delegation
 - Unconstrained simple delegation (a.k.a., impersonation)
 - Only one hop for NTLM
Data Protection in COM+

• Supported modes
 - Origin authentication and integrity protection
 - As above + confidentiality protection
Access Control in COM+

- The three hurdles to go through
 1. Activate server process
 2. Process border checks
 3. DLL border checks

- Granularity
 - Component
 - Interface
 - Method
Accountability in COM+

- No out-of-the-box support
- Developers should rely on Windows event logs
EJB Specifics
EJB Run-time Security

Common Secure Interoperability (CSI) v2 defines wire protocol
Authentication in EJB

- Defines only the use of JAAS for authenticating and credentials retrieving
- Implementation-specific
- Credentials delegation options
 - No delegation
 - Unconstrained simple delegation (a.k.a., impersonation)
Data Protection in EJB

- Implementation-specific
Access Control in EJB

- Configured through deployment descriptor
- Granularity
 - Down to individual method on a class, but not bean instance
 - Can be different from JAR to JAR
- Expressiveness
 - Method grouped into “method permissions”
 - Subjects grouped by plain roles
 - No role hierarchy
- JSR 115: “J2EE Authorization Contract for Containers” -- APIs for plugging authorization engines
roles and permissions in EJB

- Container
- Application
- security-role
- entity
- Method
- method-permission

Relationships:
- Container has 0..1 Application
- Application has 0..* security-role
- Application has 0..* entity
- Entity defines 0..* Method
- Method has 0..* permission on entity
- security-role grants 1..* method-permission
Accountability in EJB

- Implementation-specific
Outline

• Part I: Security
 - What are security mechanisms?

• Part II: Middleware and Web services
 - What are middleware and Web services?
 - What’s special about middleware and Web services security?

• Part III: Security in middleware and Web services
 - What are common architectures for security mechanisms in most middleware and Web service technologies?
 - What are the differences among security mechanisms of COM+ and EJB?

• Part IV: Conclusions
 - Summary
 - Where to go from here?
Summary

• Security
 - Objectives: CIA
 - Means
 o Protection
 – Authorization, Accountability, Availability
 o Assurance

• Middleware & Web services
 - Software layer between OS and application to provide transparencies
 - Security-related issues: scaling, granularity, naming

• Security in Middleware & Web services
 - Common features/elements
 - Technology/product specific
Where To Go From Here?

- **JavaPolis**
 - Access control architectures: EJBs versus COM+
 - Erwin Geirnaert: “Hacking J2EE servers”
 - Secure agility/agile security

- **Secure application development course**
 - http://www.secure-application-development.com
 - http://www.secappdev.com

- **Books**
 - “Security Engineering …” by Ross Anderson
If You Only Remember Three Things...

• Build security in from the beginning
• Push security out of the applications
• Design for change
Reserved slides